
 

Audio Engineering Society 

Convention Paper 
Presented at the 117th Convention 

2004 October 28–31 San Francisco, CA, USA 

This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration 
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request 
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. 
All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the 
Journal of the Audio Engineering Society. 

Jump Resonance in Audio Transducers 
Ali Jabbari1, and Andrew Unruh1 

1 Tymphany Corporation, Cupertino, CA, 95014, US 
ali@tymphany.com 

andy.unruh@tymphany.com 

ABSTRACT 

The resonance behavior of a driver with low damping is studied. In such a system, the existing nonlinearities can 
result in jump resonance, a bifurcation phenomenon with two regimes. One regime, accompanied by a sudden 
decrease in amplitude, is evident when the frequency of excitation is increasing. The other regime, exhibiting a 
sudden increase in amplitude, is present when the frequency of excitation is decreasing. Jump resonance was 
experimentally observed in an audio transducer with low damping and subsequently confirmed by analysis and 
simulation using a detailed dynamic model that includes the most significant sources of nonlinearities. The 
conclusion of this work is that the primary cause of jump resonance in audio transducers is the nonlinearity in the 
driver compliance. The importance of this phenomenon increases as the use of current amplifiers becomes more 
widespread, since the resulting low system damping makes jump resonance more likely. 

 

1.  INTRODUCTION 

Mechanical systems with energy storing elements, such 
as a mass-spring system, exhibit the familiar resonance 
behavior. In such a system, under low damping 
conditions, at resonance, the system will vibrate at a 
high amplitude, with minimal excitation. That is, at the 
resonance frequency, the system gain from the 
excitation input to the amplitude of vibration is very 
high. It is well known that the magnitude of this gain 
depends on the extent of the damping that is present in 
the system (e.g. friction, viscous damping, BEMF). 
Furthermore, the resonance frequency depends on the 
ratio of the equivalent stiffness and mass of the system. 
For example, higher stiffness results in a higher 

resonance frequency, and higher mass results in a lower 
resonance frequency. 

In an ideal linear system, the resonant behavior is well 
understood. In such systems, the maximum gain from 
the excitation amplitude to the amplitude of oscillation 
occurs at a specific frequency. Additionally, for a given 
amplitude of excitation, the amplitude of oscillation 
changes smoothly as excitation frequency is increased 
or decreased. However, when nonlinear elements are 
present in the system, such as nonlinear restoring forces, 
the resonant behavior of the system undergoes a 
qualitative change. This is particularly true when the 
system damping is low, resulting in large amplitudes of 
oscillation as resonance frequency is approached. When 
such a system is swept with a chirp signal, the peak 
amplitude of oscillation and the frequency at which it 
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occurs depend on the direction – increasing or 
decreasing frequency – of the chirp signal. 

A typical electromagnetic driver, used in most audio 
transducers, behaves much like a mass-spring system. 
This is particularly true at frequencies well below the 
cone breakup frequencies. There are however many 
nonlinear elements in such drivers. The most significant 
of those are the nonlinearities in the restoring force, the 
BL factor, and the inductance. Given that these 
nonlinearities are functions of driver cone displacement,  
the transducer behaves linearly for small excursions. As 
the cone excursion increases, the effects of 
nonlinearities become more prominent, resulting in 
harmonic and intermodulation distortion. Furthermore, 
when the driver damping is low, these nonlinearities 
significantly change the resonant behavior of the driver. 

The motivation for the analysis, presented in this paper, 
is the experimental observation of sudden jumps in the 
amplitude of driver excursion near its resonance 
frequency. This is manifested as either a sudden 
decrease or a sudden increase in the amplitude of 
oscillation, depending on the direction from which the 
resonance frequency is approached. When the resonance 
frequency is approached from a higher frequency there 
is a sudden increase in the amplitude of oscillation. On 
the other hand, when the resonance frequency is 
approached from a lower frequency, there is a sudden 
decrease in the amplitude of oscillation. Furthermore, 
the frequencies at which these jumps in the amplitude of 
cone excursion occur are distinct, which is 
representative of a bifurcation phenomenon. In a typical 
driver, due to the stiffening nature of the restoring force, 
the jump to higher amplitude of oscillation occurs at a 
lower frequency than the frequency at which the jump 
to lower amplitude of oscillation occurs. 

A detailed dynamic model of a typical audio transducer 
is developed in order to investigate the observed jump 
resonance behavior. The model includes the more 
significant nonlinearities present in a typical driver, 
namely the nonlinearities in the BL factor, inductance, 
and compliance. The resulting dynamic model is used to 
determine which of the aforementioned nonlinearities 
significantly contribute to the onset of the jump 
resonance behavior. Furthermore, with this model, the 
effect of varying these nonlinearities and the resulting 
effect on the jump phenomenon can be studied. 

An analytical treatment of the jump resonance 
phenomenon is given for both the undamped and 

damped forced oscillation. The effect of softening and 
hardening spring, as well as that of increasing system 
damping is presented. 

2.  NONLINEAR MODEL OF A DRIVER 

To investigate the effects of various nonlinearities on 
the behavior of a typical driver, a nonlinear model of 
such a driver was created. The model is implemented in 
Matlab and its graphical interface, Simulink [5,6]. There 
are two main components in the model, namely, the 
mechanical and the electrical subsystems. Each 
subsystem includes the appropriate nonlinear elements 
and the governing differential equations. In each 
subsystem the various internal states of the system, and 
significant parameters and quantities such as forces, 
voltages, inductance, BL-factor and others can be 
monitored. The two subsystems are interconnected to 
each other, as shown in Figure 1. 

 

Figure 1: Mechanical and Electrical Subsystems 

The mechanical subsystem models the driver as a point 
mass, with a single degree of freedom in x ,  attached to 
a nonlinear spring, and a linear mechanical damper. The 
electromagnetic force applied to the point mass is 
determined by the current output of the electric block 
and the value of the nonlinear BL factor, see equation 1.  

ixBLF ⋅= )(     (1) 
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 It is assumed that the BL factor can be represented as a 
nonlinear function of the position of the point mass. 
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Figure 2: BL curve for a typical driver 

 

Figure 3: Compliance curve for a typical driver 

 

The nonlinear spring force is given by:  

xxKFsp ⋅= )(     (3) 

where )(xK is the nonlinear spring stiffness. Similar to 
the BL factor, the spring stiffness can be represented by 
a polynomial, 
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 defines the driver compliance. Figure 2 

and 3 show the BL and compliance curve used in the 
model, respectively. These figures show that as the cone 
moves away from its equilibrium position the BL factor 
decreases and the stiffness increases. The process of 
determining the nonlinear stiffness and BL factor of a 
given driver is not discussed here; a detailed discussion 
of this subject is available in the literature [1,2,3]. With 
these definitions, the differential equation for the 
mechanical subsystem is given by: 

ixBLFxxKxBxM ⋅==++ )()(&&&  (5) 

where M is the mass of the moving part and B is the 
mechanical damping of the system. 

 

Figure 4: Inductance curve for a typical driver 

The electrical subsystem includes the nonlinear 
inductance and the electrical resistance of the coil. Also 
included in this subsystem is the model of the existing 
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back EMF as the coil moves relative to the magnet. The 
inductance is shown in Figure 4 and is modeled as: 

i
n

i
i xlxLe ∑

=

=
0

)(     (6) 

The differential equation for the electrical subsystem 
with a voltage amplifier is then given by: 

inVxxBLi
dt

di
xLe =⋅+⋅+⋅ &)(Re)(  (7) 

where Re is the coil resistance, xxBL &⋅)(  is the 

BEMF, i   is the current in the coil, and inV  is the input 

voltage to the coil. 

In the case of an ideal current amplifier the above 
equation becomes: 

inViG =⋅     (8) 

with G a constant, thus eliminating the effect of BEMF 
and inductance. This in turn will remove the distortion 
due to nonlinearities in inductance and BEMF [4]. The 
elimination of the nonlinear BEMF and the subsequent 
reduction in distortion may however be at the cost of 
increasing the likelihood of the onset of the jump 
resonance behavior. To eliminate this adverse side 
effect, it is necessary to introduce linear damping back 
into the system. 

3.  FORCED OSCILLATION 

In this section we develop some of the analytical results 
that explain in more detail the jump resonance 
phenomenon. To develop an analytical model for this 
nonlinear behavior a simplified mass, spring, and 
damper system is considered. The spring is assumed to 
be nonlinear and of the form: 

 2
10)( xkkxk ±=    (9) 

which may describe both stiffening and softening 
nonlinear spring effect. The undamped forced response 
is first considered followed by the damped forced 
response. 

3.1. Undamped forced oscillation 

To illustrate the jump resonance behavior of a driver, 
the forced response of the undamped mechanical 
subsystem is investigated.  Given that the mechanical 
stiffness in a given driver is parabolic (see Figure 3), for 
simplicity we may write the equation of motion as: 

FxxkkxM =⋅++ ][ 2
10&&   (10) 

Dividing through by the mass, we get: 

MFPxx n /3 ==++ βω&&   (11) 

where Mk /1=β  

Assuming a harmonic excitation of frequency ω , and 
magnitude MP ⋅ ,  the equation of motion becomes: 

)sin(3 tPxx n ⋅+−−= ωβω&&   (12) 

Let us assume )sin( tC ⋅ω to be the first approximation 

to the solution of the equation of motion, with C  a 
constant. Substituting this assumed solution into our 
differential equation, we get: 
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where px&& is the calculated acceleration based on the 

assumed solution. Integrating this equation twice, and 

assuming periodicity for px , we get a second 

approximation for the solution of our differential 
equation, given by: 
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Although the first iteration, given by equation 14, 
provides a satisfactory approximation to the solution of 
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equation 12, the above procedure may be repeated in 
order to arrive at a better approximate solution. We shall 
stop at the present iteration and use the Duffing method 
to determine the constant in the above approximate 
solution.  Based on Duffing’s approach [7-10], the 
component of the response with frequency equal to ω  
is set equal in the first and the second approximation, 
giving: 

C
C

P
CC n ⋅−+= )
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 (15) 

or 
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Given the mass, nonlinear stiffness, and the forcing 
function, the above equation can be solved to determine 
the amplitude of the forced vibration as a function of the 
excitation frequency, ω . As an example consider the 
following case: 

kgM 3103 −×=  

mNk /6.7350 =  

37
1 /1066.3 mNk ×=  

NF 27.1=  

Then equation 16 becomes: 

0423)1045.2(1015.9 2539 =−−×+× CC ω  

     (17) 

and can be solves to find the constant C as a function of 
the excitation frequency. Keeping the real roots of 
equation 17 and plotting them versus the excitation 
frequency result in Figure 5. 

 

 

Figure 5: Force response for a nonlinear spring 

This figure shows that the frequency response of the 
nonlinear system is quite different from that of a linear 
system. In the nonlinear case as many as three different 
amplitudes of response are possible for a given 
excitation frequency. Furthermore, the amplitude of 
response, unlike the linear case, remains finite for all 
frequencies. It can be seen from Figure 5 that the 
frequency response curve near the resonance frequency 
tilts to the right. This tilt is due to the stiffening of the 
spring at large displacement. It should be noted that, in 
Figure 5, the points indicated by dots are unstable points 
and those marked by asterisks are stable points.  

 

Figure 6: Force response, rapidly stiffening spring 

Figure 6 shows the effect of having a spring that stiffens 
more rapidly as displacement increase. To generate this 
figure the nonlinear part of the spring was increased to 
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38
1 /1093.2 mNk ×= . This higher value of 

1k results in more tilting of the curve and a wider gap. 

The results shown in Figures 5 and 6 are valid for a 
spring that stiffens as displacement increases. In the 
case of a softening spring the amplitude curve versus 
excitation frequency is given in Figure 7. Specifically, 
the curve in Figure 7 corresponds to the case where: 

mNk /20350 = , and 37
1 /1066.3 mNk ×−=   

Unlike the previous figures, this figure shows a curve 
that is tilting to the left. This tilting to the left, toward 
the region where the frequency is lower, is in accord 
with the fact that as the amplitude of motion increases, 
due to the softening characteristics of the spring, the 
effective resonance frequency  of the system decreases.  

 

Figure 7: Forced response with a softening spring 

 

3.2. Damped forced oscillation 

To this point we have ignored the effect of damping on 
the nonlinear frequency response of the system. In the 
interest of brevity, the effect of introducing linear 
damping is discussed without presenting detailed 
derivations. In the presence of linear damping a term 
in x&  will have to be added to equation 10, resulting in 
equation 18. 

FxxkkxbxM =⋅+++ ][ 2
10&&&   (18) 

where b is the damping constant. The magnitude of 
forced response at a given frequency is then given by: 
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where  
M

b

2
=η  

With mSecNb /.32.0= , and the other parameters 
remaining the same, equation 19 is used to solve for 
C as a function of the input frequency ω . Plotting the 
real roots of equation 19 results in Figure 8 showing the 

amplitude of the response, C , versus the input 

frequency for the damped system. 

 

Figure 8: Jump resonance in the presence of damping 

 

Figure 8 shows that unlike the undamped nonlinear 
response, the stable and unstable parts of the damped 
response curve merge. It can also be seen from this 
figure that as the input frequency increases there is a 
sudden drop in the amplitude of response, and 
conversely there is a sudden jump in the response 
amplitude as the input frequency decreases. As 
indicated by Figure 8, the frequencies at which these 
sudden jumps in the response amplitude occur are 
distinct, and dependent on the direction in which the 
excitation frequency is changed.  
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A further characteristic of the jump resonance 
phenomenon is its strong dependence on the level of 
damping present in the system. Figure 9, shows the 
change in the response magnitude versus input 
frequency with decreasing damping. As the figure 
indicates the jump resonance becomes less and less 
pronounced as the system damping increases. In fact, at 
sufficiently high level of damping there is only a minor 
tilt to the magnitude curve, and no jump behavior can be 
detected. 

 

 

Figure 9: Effect of damping on jump resonance 

4.  SIMULATION RESULTS 

In order to investigate the nonlinear behavior of a 
typical driver a model of a three inch Vifa driver was 
created in Matlab and Simulink. The model is based on 
the equations that were defined in Section 2. The model 
allows for the driver to be driven with either a voltage 
or a current amplifier. It includes the nonlinearities in 
BL factor, spring stiffness, and the inductance. 

As discussed in the previous section, in order to observe 
the jump resonance phenomenon the level of damping 
in the system has to be low. Given that a current 
amplifier eliminates the damping effects of BEMF, 
resulting in a lightly damped system, in order to 
simulate the jump behavior, the simulations were 
performed in the current amplifier mode. The response 
of the driver was simulated in two directions. First, the 
driver was excited by a chirp signal starting at a 
frequency of 100 Hz and stopping at 140 Hz over a 40 
second total time interval. In the reverse direction, the 

driver was excited by a chirp signal going from 140 Hz 
to 100 Hz over a 40 second time interval. The system 
response was sampled at 10 KHz and stored in a data 
structure for later analysis. Figure 10 is the simulated 
envelope of the position response of the driver versus 
time as the input frequency increases. This figure shows 
a sudden drop in the amplitude of cone excursion 18 
seconds into the simulation. This corresponds to the 
excitation frequency of:    Hz11818100 =+=ω  

 

Figure 10: Simulated cone excursion with increasing 
frequency of excitation 

Conversely, Figure 11 is the simulated envelope of the 
position response of the driver versus time with 
decreasing input frequency. 

 

Figure 11: Simulated cone excursion with decreasing 
frequency of excitation 
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Figure 11 shows a sudden jump in the excursion 
amplitude of the cone 34 seconds in to the simulation. 
This corresponds to the excitation frequency of: 

Hz10634140 =−=ω  

Figure 12 shows the amplitude of the driver cone 
displacement versus excitation frequency for both 
increasing and decreasing input frequency. The forward 
arrows represent the increasing frequency direction, and 
the backward arrows represent the decreasing frequency 
direction.  

 

 

Figure 12: Simulated frequency response with nonlinear 
BL factor 

 

Figure 12 clearly shows the same behavior that was 
described in the previous section, and depicted in Figure 
8. There is a sudden drop in the response amplitude as 
the excitation frequency increases, at approximately 118 
Hz. Conversely, there is a sudden jump in the response 
amplitude as the excitation frequency decreases, at 
approximately 107 Hz.   

The model was also used to investigate the effect of 
other system nonlinearities on the driver jump 
resonance behavior. Although the jump resonance 
occurs solely due to the nonlinearities in the stiffness of 
the driver’s surround and spider, the nonlinearities in 
the BL factor affect the shape of the frequency response 
curve as well as the specific values of the jump 
frequencies. In general, for a stiffening spring, greater 
excitation magnitude causes the jump frequencies to be 

shifted up in frequency, and widens the gap between the 
two jump frequencies.  Conversely, smaller excitation 
magnitude causes the jump frequencies to be shifted 
down in frequency, and reduces the gap between the 
two jump frequencies. Given that the nonlinear BL 
factor, as shown in Figure 2, decreases in magnitude as 
the cone excursion increases, it results in lowering the 
jump frequencies and narrowing the gap between the 
two jumps. Figure 13 shows the simulation results with 
a linear BL factor: note the higher jump frequencies at 
approximately 109 HZ and 127 Hz, and a wider gap 
between the two jump frequencies. 

 

Figure 13: Simulated frequency response with linear BL 
factor 

As shown in this section, the model predicts the 
nonlinear behavior of a given driver and is in agreement 
with the analytical results of Section 3. It can be used to 
conduct parametric studies relating various system 
parameters to the response of the driver.  

5.  EXPERIMENTAL RESULTS 

A Vifa TC08WD49-08 driver was used to 
experimentally reproduce the jump resonance 
phenomenon described in the previous sections. A chirp 
signal was used to excite the driver with either 
increasing or decreasing frequency. A current amplifier 
was used to drive the Vifa transducer, thus eliminating 
the effect of BEMF damping. The displacement of the 
cone was measured with a laser displacement sensor and 
sampled at 10 KHz. The resulting data is analyzed and 
presented in this section. 
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Figure 14 is the envelope of the time response of the 
cone displacement when the driver is excited by a chirp 
signal, starting at a frequency of 100 Hz and stopping at 
140 Hz, over a 40 second total time interval. As shown 
in this figure, there is an abrupt drop in the amplitude of 
the cone displacement at approximately 27 seconds into 
the experiment. This corresponds to the excitation 
frequency of Hz12727100 =+=ω . 

 

Figure 14: Cone excursion with increasing frequency of 
excitation. 

Figure 15 is the envelope of the time response of the 
cone displacement in the reverse direction, when the 
driver is excited by a chirp signal going from 140 Hz to 
100 Hz over a 40 second time interval. Again, a sudden 
jump in the response amplitude is clearly detectable. 

 

Figure 15: Cone excursion with decreasing frequency of 
excitation 

As shown in Figure 15, there is an abrupt jump in the 
amplitude of the cone displacement at approximately 25 
seconds in to the experiment. This corresponds to the 
excitation frequency of Hz11525140 =+=ω . 

The amplitude of cone excursion versus the forcing 
frequency is determined, based on the experimental 
data, and given in Figure 16. With increasing frequency, 
an abrupt reduction in the amplitude of excursion occurs 
at about 127 Hz. Conversely, with decreasing 
frequency, a sudden jump in the amplitude of cone 
excursion occurs at about 115 Hz.  It should be noted 
that the low frequency deviation of the two frequency 
response curves can be attributed to creep and hysteresis 
in the surround and the spider [11].   

 

 

Figure 16: experimental frequency response of a Vifa 
driver 

The experimental results presented in this section show 
the same jump phenomenon that was described in the 
previous section. Acoustically, these jumps translate to 
sudden and very noticeable changes in the acoustic 
output of the driver.  

The differences in the actual jump frequencies between 
the experimental and the simulated results can be 
attributed to the mismatch between the model 
parameters and the actual driver parameters, as well as 
imperfect match between the drive amplitude in the 
simulation as compared to the drive amplitude in the  
experimentation. Other contributing factors are the 
unmodeled nonlinearities such as creep and hysteresis in 
the restoring spring, as well as hysteresis in the BL 
factor.  
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6.  CONCLUDING REMARKS 

Most audio transducers have surrounds and spiders that 
act as nonlinear spring. The nonlinear restoring force 
that acts on the driver cone can lead to a jump 
phenomenon, especially under low damping conditions. 
For instance, if a current amplifier is used to remove the 
nonlinearities due to BEMF and coil inductance, the 
resulting loss of damping may lead to the appearance of 
the jump behavior. This implies that it would be prudent 
to introduce linear damping to the system to prevent the 
occurrence of this undesirable jump resonance 
phenomenon.  
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APPENDIX 

The polynomial coefficients of the BL factor, spring and 
inductance used in the simulation, are given by: 

 

b0 = 3.5801 N/A b1 =0.17891 N/Amm 
b2 =-0.1305 N/Amm2 b3 =-0.004935 N/Amm3 

b4 =-9.609e-5 N/Amm4 b5 =-0.000292 N/Amm5 

b6 =-0.0001355 N/Amm6 b7 =1.4618e-5 N/Amm7 

b8 =-2.864e-6 N/Amm8  

Table 1 Polynomial coefficients for BL factor 

 
c0 = 1.3594 mm/N c1 =0.068382 1/N 
c2 =-0.09151 1/Nmm c3 =-0.0078709 1/Nmm2 

c4 =0.0047939 1/Nmm3 c5 =0.00049244 1/Nmm3 

c6 =-0.00017717 1/Nmm4 c7 =-1.3531e-5 1/Nmm5 

c8 =3.0196e-6 1/Nmm6  

 

Table 2 Polynomial coefficients for compliance 

 

l0 = 0.45636 mH l1 =-0.0739 mH/mm 
l2 =-0.00662 mH/mm2 l3 =0.005275 mH/mm3 

l4 =0.000883 mH/mm4 l5 =-0.000485 mH/mm5 

l6 =-9.537e-5 mH/mm6 l7 =1.875e-5 mH/mm7 

l8 =3.9688e-6 mH/mm8  

 

Table 3 Polynomial coefficients for inductance 

 

Re =coil resistance =5.5 Ohm 
M=Effective mass=3g 
b=Linear damping=0.32N.sec/m 


